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INTRODUCTION 

Linear Kelvin-Helmholtz instability is considered a mechanism of central importance in horizontal 
gas-liquid flows (e.g. Kordyban & Ranov 1970; Andritsos & Hanratty 1987). Nonlinear correc- 
tions, however, have received relatively little attention and their significance is not clear. The 
present work considers the existence and properties of progressive, large-amplitude waves of 
permanent form on the interface between a gas and a liquid layer of finite depth. The gas shear 
is modeled by introducing a velocity discontinuity U across the interface. In this inviscid approach 
the waves are functions of four parameters: the wave amplitude a, the ratio of fluid densities r, 
the relative velocity of the fluids U and the liquid depth. Fundamental theoretical results in the 
literature (Bontozogiou & Hanratty 1988) are summarized and subsequently used to infer the 
nonlinear evolution of interfacial waves. The predictions are shown to compare favorably (at least 
qualitatively) with the experimental observations. 

T H E O R E T I C A L  R E S U L T S  A N D  C O M P A R I S O N S  

Progressive waves of permanent form at the interface between two fluids in relative motion are 
considered. The fluids are assumed inviscid and the flow, irrotational. The two streams have 
densities P6 and PL, uniform depths h6 and hL and move co-currently with uniform velocities Uo 
and UL. The interface is covered with two-dimensional, periodic waves of amplitude a and 
wavelength L (wavenumber k = 27r/L) which propagate with phase speed C in the direction of the 
flow. It should be noted that, although the next few formulas include all the above parameters, 
only the limit hG ~ oo is considered in the present work. 

The assumption of waves with infinitesimally small amplitude (linearization) leads to the 
well-known Kelvin-Helmholtz instability, which may be interpreted as the nonexistence of steady, 
linear waves of a given wavelength when the current velocity U = (UG - UL) is larger than a critical 
Uol (the subscript stands for critical linear). The value of Ud is given (Milne-Thomson 1968) by the 
expression 

U2' =kg( l - r+x)  (tanhkhG+rtanhkhL)'r [1] 

where r is the ratio of densities Pc/PL and x is the ratio of the surface tension forces to gravity 
forces, k2tr /pLg. 

Perturbation expansions in the wave amplitude a were used to extend the validity of the above 
results. The dispersion relation for weakly nonlinear waves at the interface between fluids of 
arbitrary depth was thus found (Bontozoglou & Hanratty 1988) to be 

____L___ 1 1 
(U -- C)2= k (1 --r)[1 +a2f(k, U, hL,h~)], [2] C2+r 

tanh khL tanh khG 
where the expression forf is  contained in the original publication. Waves are considered sufficiently 
long for the effect of surface tension to be neglected. 
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From the form of the dispersion relation for finite-amplitude waves, it can be seen that there 
will again be a critical current Uc beyond which steady solutions no longer exist. This limiting 
behavior is referred to as the dynamical limit, to distinguish from the limit of very high waves due 
to the occurrence of geometrical singularities and breaking (geometrical limit). Saffman & Yuen 
(1982) calculated Uc, both analytically (second-order approximation) and numerically, for un- 
bounded fluids. They were the first to note that the critical current velocity increases for increasing 
wave amplitude a, a result that can be viewed as a stabilization of parallel flows by waves. Thus, 
for a given value of U > Ucl, steady interfacial configurations exist on unbounded fluids only if 
there are waves with heights greater than some minimum. 

To extend the dynamical limit results for liquid films of finite depth ( h G ~ ) ,  the value of the 
critical current velocity Uc, correct to second order in the amplitude a, is obtained by equating 
the two roots in [2]. For the case of a liquid film of arbitrary depth, the dependence of U~ on the 
amplitude a of the waves takes the form 

~ = 1 +fk2a  2. [3] 

When the term [(U~/Ucl)  2 - 1] is plotted vs k 2 a  2, it gives a straight line through the origin with slope 
f ,  which varies with liquid depth. For deep liquid (hL --* oe), the slope takes the limiting value 

1 + r  2 
(f)deep = (1 + r) 2" [4] 

Figure 1 shows f ,  normalized with the deep-fluid slope, as a function of exp(-khL) for three values 
of the density ratio (r = 0.1, 0.5, 0.9). It is interesting to note that for any value of r there are regions 
where the slope, f ,  is negative. In these regions an increase in the amplitude a of steady waves gives 
rise to a decrease in the critical velocity U¢. This is just the opposite of what is found for unbounded 
fluids, in that, finite-amplitude waves of a given wavelength now cease to exist at current velocities 
lower than the critical value predicted from linear theory. It should be noted that the above results 
were also verified numerically. Therefore, the unexpected effect of wave amplitude on U¢ for very 
thin liquid layers is real and not an artiface resulting from ignoring higher-order terms in the 
expansion. 

It is evident from figure 1 that, for gas-liquid systems (r < 0.1), there is not much change to the 
slope until k h L  becomes very small. Then, f decreases abruptly and attains large negative values. 
It seems, therefore, that there exist two fundamentally different behaviors, one associated with 
extremely thin films (or, equivalently, very long waves) and the other with thicker ones. 
Furthermore, unlike liquid-liquid systems (r = 0.9), characterized by a gradual transition with 
decreasing thickness, gas-liquid flows are predicted to exhibit a shock-like transition which should 
manifest itself in experimental observations. 

The results are summarized in figure 2 which shows the variation of [(Uc/UcI)  2 - 1] with wave 
steepness k 2 a  2 for two representative cases, one with positive and one with negative slope. Steady 
wave solutions exist in the region between the negative y-axis and the dynamical limit line. The 
solution domain is also bounded to the right by the geometrical limit, which is not shown in the 
graph. It is evident that, for a positive slope, the restriction imposed by the dynamical limit is a 
minimum wave steepness when U > U¢~. With a negative slope there are no steady solutions for 
U > Ucl and the restriction is a maximum steepness for U < Uet. 

Based on the above findings, it is attempted to infer the evolution of linearly unstable 
disturbances on highly sheared liquids, as a function of the film thickness. Two different behaviors 
are predicted and are outlined in the following. Concerning thick films (f,  positive), it is recalled 
that the existence of nonlinear, steady solutions at current velocities above the critical linear is 
associated with supercritical stability (Drazin & Reid 1984; Miles 1986). This notion implies that 
the fundamental harmonic remains dominant with increasing current velocity, leading to periodic 
waves of finite amplitude. The range, however, of the wave steepness is restricted by the dynamical 
limit to values above some minimum. This restriction can be readily met by a decrease in the 
wavelength, since it is known that the energy per unit area associated with gravity waves is, to first 
order, proportional to the square of the amplitude and does not depend on the wavelength (Phillips 
1977). The increase in the wave steepness cannot continue indefinitely and an upper bound is set 
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Figure 1. Slope of the [(Uc/Ud) 2 -- 11 vs a 2 line (normalized Figure 2. Critical current velocity as a function of wave 
with the deep-fluid slope) vs exp(-khL), steepness, from second-order theory. 

by the geometrical limit. It has, indeed, been shown elsewhere (Bontozoglou & Hanratty 1989) that 
this limit correlates the wave steepness actually observed under a wide range of flow conditions. 

Extremely thin films (f, negative) which are characterized by the absence of nonfinear, steady 
solutions for U > Uc~, exhibit subcritical instability. This implies that above the critical current 
velocity all superharmonics are simultaneously excited and none of the higher terms may be 
truncated. The fundamental, linearly unstable wavelength cannot retain its identity and evolve into 
a nonlinear wave and it is plausibly anticipated that there is a fast transition to a pebbly interface. 
Thus, the nonexistence of finite-amplitude waves is associated not with a more stable film but with 
the failure of the system to retain the energy of the instability within a narrow frequency band. 

Both of the above predictions have a qualitative resemblance to actual observations in gas--liquid, 
horizontal flows. Wave properties were measured by Andritsos (1986), who conducted air-water 
experiments in horizontal pipelines of 2.52 and 9.53 cm dia, with liquid viscosities of 1-80 mPa s. 
A drastic increase in the wave steepness with a relatively small increase in the air velocity is 
consistently observed in the data. This behavior occurs at high gas velocities and is caused by a 
respective decrease in the wavelength. A possible explanation is provided if it is recognized that 
the range of liquid layer depths is such that the dynamical limit curve always has a positive slope. 
Increasing the air flow rate results in an increase in the current velocity U (=  UG - UL). When U 
exceeds the linear Kelvin-Helmholtz limit Ud, there is a transition from a region where waves of 
any steepness are dynamically possible to a region where only waves of steepness above some 
minimum exist. Additional evidence in favor of this argument is provided by figure 3, where the 
measured wave steepness H/L is plotted vs the dimensionless current velocity ratio (Uc- UL)/U¢~ 
for the relevant data. It is seen that the drastic increase in steepness actually takes place when the 
current velocity exceeds the linear Kelvin-Helmholtz limit. 

A phenomenon, possibly associated with the behavior of the dynamical limit, is observed when 
roll waves are initiated by air flowing over very thin liquid films. It has been reported (Hanratty 
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Figure 3. Wave steepness vs the dimensionless current velocity [measurements by Andritsos (1986)]. 
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Figure 4. Critical gas velocity for the onset of roll waves as a function of ReL, from various investigations. 
Data reproduced from Andreussi et al. (1985). The dashed line corresponds to a stability analysis by 

Hanratty & Hershman (1961). 

& Hershman 1961; Miya 1970) that the initiation of  roll waves at high gas velocities is insensitive 
to gas velocity and occurs at an approximately constant liquid flow rate, This is contrary to linear 
stability analysis (Hanratty & Hershman 1961), which indicates that at sufficiently high gas 
velocities the film is unstable for all liquid flow rates. Andreussi e t  a l .  (1985) examined the effect 
of liquid viscosity on the critical liquid flow rate and proposed an empirical relaxation correction 
for the stability analysis. A summary of the data, reproduced from this last work, is presented in 
figure 4. 

The previously described theoretical results, concerning the behavior of the dynamical limit for 
very thin liquid films, could provide an alternative explanation. It could specifically be argued that, 
when the film thickness decreases below the value which renders the dynamical limit line of negative 
slope, no roll waves will grow from infinitesimal disturbances even if linear theory predicts 
instability. Following the evolution of a film moving at constant flow rate (ReL), as the gas velocity 
increases, one would expect a progressive thinning of the film owing to the increasing shear. If the 
film it too thin (in the above sense) by the time the instability gas velocity is reached, no roll waves 
will be observed. This argument is also in qualitative agreement with the effect of viscosity, since 
increasing the viscosity results in a thicker liquid film and, therefore, moves the transition to lower 
liquid flow rates. 

C O N C L U D I N G  REMARKS 

Large-amplitude, progressive waves of permanent form at the interface between two inviscid 
fluids in relative motion are investigated theoretically. Parameters of key importance i n  appli- 
cations, such as the relative velocity of the two fluids and the liquid film thickness, are studied in 
detail. Attention is focused on nonlinear phenomena, which are examined by extending techniques 
developed for handling free-surface waves. The state-of-knowledge of the fundamental aspects of 
the above problem is rather incomplete, at least compared with the more intensively studied case 
of free-surface waves. Therefore, the theoretical work undertaken led to new results of fundamental 
interest. 

As is well-known, inviscid theory does not point to a single wave for given flow conditions. 
Rather it predicts that a whole range of waves is acceptable and energy arguments (wind input vs 
dissipation) should dictate which of the above waves is actually observed. In this sense, its 
application to the prediction of wave properties in two-phase flow problems is not straightforward. 
However, as this work has demonstrated to a certain extent, theory and observations are not 
irrelevant. Inclusion of a gas velocity in the inviscid analysis leads to the dynamical limit for steady, 
progressive waves, in addition to the geometrical limit which is also known from free-surface waves. 
The behavior of this limit with changing flow conditions is in qualitative agreement with two-phase 
flow observations. 
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